Рабочая программа по математике для 8 класса

Дата публикации:
Автор:
Евсельева Галина Валентиновна

Управление по делам образования, культуры, молодежи и спорта

администрации Далматовского района

Муниципальное казенное общеобразовательное учреждение

«Затеченская основная общеобразовательная школа»

«Рассмотрено»                                             «Согласовано»                                  «Утверждаю»

На заседании методического                       Заместитель директора по               Директор МКОУ

Совета                                                           УВР_________________                  «Затеченская основная

Протокол №____                                                                                         общеобразовательная школа»

от «___»_________2013 г.               от «___»___________2013 г.                         ________________

от «___»__________2013г.

Рабочая  программа

по математике

для 8 класса

с.Затеченское, 2013 г.

Составитель:

Евсельева Г.В. учитель математики МКОУ «Затеченская основная общеобразовательная школа»

Рецензент:

 зам.директора по учебно-воспитательной работе МКОУ «Затеченская основная общеобразовательная школа»

Рабочий адрес:

РАБОЧАЯ ПРОГРАММА

ДЛЯ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

(базовый уровень)

Статус документа

Рабочая  программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса.

Рабочая программа выполняет две основные функции.

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Структура документа

Рабочая программа включает три раздела: пояснительную записку; основное содержание с примерным распределением учебных часов по разделам курса; требования к уровню подготовки выпускников, контрольно-измерительный материал.

Пояснительная записка.

Рабочая программа по математике  для 8 класса  составлена на основе

- Закона РФ «Об образовании»;

- Приказа МО РФ от 5 марта 2004г. №1089 « Об утверждении федерального компонента государственных стандартов общего и среднего ( полного ) общего образования»;

- Приказа МО Н РФ от 19 октября 2009 г. №427 « О внесении изменений в федеральный компонент государственных образовательных стандартов основного общего и среднего (полного) общего образования, утверждённый приказом МО РФ от 5 марта 2004 г.»;

- Примерной программы основного общего и среднего (полного) общего образования по математике;

- Приказа МО Н РФ от 23 декабря 2009 г. №822 « Об утверждении федеральных перечней учебников, рекомендованных к использованию в образовательном процессе»;

- Приказа МО РТ № 4165/12от 9 июля 2012 г. «  Об утверждении базисного и примерных учебных планов для образовательных учреждений Республики Татарстан, реализующих программы начального общего и основного общего образования».

Согласно базисному учебному плану основной школы, рекомендациям Министерства образования Российской Федерации и в продолжение начатой в 7 классе линии, выбрана данная учебная программа и учебно-методический комплект.

            Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;
  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудности;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
  • развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.

Место предмета в федеральном базисном учебном плане

В соответствии с федеральным базисным учебным планом 2004 года для образовательных учреждений Российской Федерации на изучение математики в 8 классе отводится 5 часов в неделю.

Курс математики 8 класса состоит из следующих предметов: «Алгебра», «Геометрия»,  которые изучаются блоками. В соответствии с этим составлено тематическое планирование.

Количество часов по темам изменено в связи со сложностью материала и с учетом уровня обученности класса.

Контрольных работ – 14: по геометрии – 5, по алгебре – 9, из них одна итоговая.

Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных, контрольных работ.

Календарно-тематическое планирование составлено на 170 уроков. Из них на алгебру (102 часа), на геометрию  (68 часов).

Требования к уровню подготовки учащихся

В результате изучения курса алгебры 8 класса учащиеся должны:

 - правильно употреблять и понимать , термины «выражение», «тождественное преобразование», «уравнение», «корень уравнения», «решение системы» понимать формулировку заданий: «упростить выражение», «разложить на множители», «решить уравнение, неравенство, систему»;

 - составлять выражения и формулы, выполнять соответствующие вычисления, выражать одни переменные через другие;

 - выполнять действия со степенями с натуральным и целым  показателем, многочленами, алгебраическими дробями, выполнять разложение многочленов на множители вынесением множителя за скобки, применением формул сокращенного умножения;

 - выполнять преобразование выражений, содержащих квадратные корни;

 - понимать, что уравнение – это математическая модель различных задач;

 - решать линейные , квадратные и простейшие рациональные уравнения, системы уравнений с двумя переменными

 - решать текстовые задачи с помощью  уравнений;

 - решать линейные неравенства с одной переменной и их системы;

 - понимать, что функция – это математическая модель, позволяющая описывать и изучать зависимости между реальными величинами ;

 - правильно употреблять соответствующую функциональную терминологию;

 - находить значения изученных функций, заданных формулой, таблицей, графиком; решать обратную задачу;

 - находить по графику функции промежутки возрастания и убывания функции, промежутки знакопостоянства, наименьшее и наибольшее значения;

 - строить графики линейной функции прямой и обратной пропорциональности, квадратичной функций.

На протяжении изучения материала предполагается закрепление и отработка основных умений и навыков, их совершенствование, а также систематизация полученных ранее знание, таким образом, решаются следующие задачи:

?      введение терминологии и отработка умения ее грамотно использования;

?      развитие навыков изображения планиметрических фигур и простейших геометрических конфигураций;

?      совершенствование навыков применения свойств геометрических фигур как опоры при решении задач;

?      формирования умения решения задач на вычисление геометрических величин с применением изученных свойств фигур и формул;

?      совершенствование навыков решения задач на доказательство;

?      отработка навыков решения задач на построение с помощью циркуля и линейки;

?      расширение знаний учащихся о треугольниках, четырёхугольниках и окружности.

 Цели 

            Изучение предмета направлено на достижение следующих целей:

            ·овладение системой математических знаний и умений, необходимых для            применения в практической деятельности, изучения смежных дисциплин,   продолжения образования;

·интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

· формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

·воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

1.Требования к уровню подготовки выпускников основной школы        

В результате изучения математики ученик должен

знать/понимать

· существо понятия математического доказательства; примеры доказательств;

· существо понятия алгоритма; примеры алгоритмов;

·как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

· как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

· как потребности практики привели математическую науку к необходимости расширения понятия числа;

· вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

·каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;

·смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

В результате изучения алгебры 8 класса  ученик должен

знать/понимать

·                существо понятия математического доказательства; примеры доказательств;

·                существо понятия алгоритма.

·                как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

·                 как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

уметь

·         применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

·        
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

·        
решать линейные и квадратные неравенства с одной переменной и их системы;

·        
 решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

·        
 изображать числа точками на координатной прямой;

·        
определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

В результате изучения геометрии  8 класса  ученик должен

уметь

· пользоваться языком геометрии для описания предметов окружающего мира;

· распознавать геометрические фигуры, различать их взаимное расположение;

· изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

· распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

· в простейших случаях строить сечения и развертки пространственных тел;

· проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

·вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

· решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

·проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

· решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

· описания реальных ситуаций на языке геометрии;

· расчетов, включающих простейшие тригонометрические формулы;

· решения геометрических задач с использованием тригонометрии

· решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

· построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА.

ОСНОВНОЕ СОДЕРЖАНИЕ
Алгебра 8 класс
(102 ч.)

1. Рациональные дроби (23ч)

Рациональная дробь. Основное свойство дроби, сокращение дробей. Сложение, вычитание, умножение и деление дробей.

Преобразование рациональных выражений. Функция и её график.

Цель – выработать умение выполнять тождественные преобразования рациональных выражений.

Знать основное свойство дроби, рациональные, целые, дробные выражения; правильно употреблять термины «выражение», «тождественное преобразование», понимать формулировку заданий: упростить выражение, разложить на множители, привести к общему знаменателю, сократить дробь. Знать и понимать формулировку заданий: упростить выражение, разложить на множители, привести к общему знаменателю, сократить дробь, свойства обратной пропорциональности.

Уметь осуществлять в рациональных выражениях числовые подстановки и выполнять соответствующие вычисления, выполнять действия сложения и вычитания с алгебраическими дробями, сокращать дробь, выполнять разложение многочлена на множители применением формул сокращенного умножения, выполнять преобразование рациональных выражений. Уметь осуществлять в рациональных выражениях числовые подстановки и выполнять соответствующие вычисления, выполнять действия умножения и деления с алгебраическими дробями, возводить дробь в степень, выполнять преобразование рациональных выражений; правильно употреблять функциональную терминологию (значение функции, аргумент, график функции), строить график обратной пропорциональности, находить значения функции y=k/x по графику, по формуле.

2. Квадратные корни (18 ч)

Понятие об иррациональном числе. Общие сведения о действительных числах. Квадратный корень, приближённое значение квадратного корня. Свойства квадратных корней. преобразования выражений, содержащих квадратные корни. Функция и её график.

Цель – систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие числа; выработать умение выполнять простейшие преобразования выражений, содержащих квадратные корни.

Знать определения квадратного корня, арифметического квадратного корня, какие числа называются рациональными, иррациональными, как обозначается множество рациональных чисел; свойства арифметического квадратного корня.

Уметь выполнять преобразование числовых выражений, содержащих квадратные корни; решать уравнения вида x2=а; находить приближенные значения квадратного корня; находить квадратный корень из произведения, дроби, степени, строить график функции и находить значения этой функции по графику или по формуле; выносить множитель из-под знака корня, вносить множитель под знак корня; выполнять преобразование выражений, содержащих квадратные корни.

3. Квадратные уравнения (21 ч)

Квадратное уравнение. Формулы корней квадратного уравнения. Теорема Виета. Решение рациональных уравнений. Решение задач, приводящих к квадратным и рациональным уравнениям.

Цель – выработать умения решать квадратные уравнения, простейшие рациональные уравнения и применять из к решению задач.

Знать, что такое квадратное уравнение, неполное квадратное уравнение, приведенное квадратное уравнение; формулы дискриминанта и корней квадратного уравнения, терему Виета и обратную ей.

Уметь решать квадратные уравнения выделением квадрата двучлена, решать квадратные уравнения по формуле, решать неполные квадратные уравнения, решать квадратные уравнения с помощью теоремы, обратной теореме Виета, использовать теорему Виета для нахождения коэффициентов и свободного члена квадратного уравнения; решать текстовые задачи с помощью квадратных уравнений.

Знать какие уравнения называются дробно-рациональными, какие бывают способы решения уравнений, понимать, что уравнение – это математический аппарат решения разнообразных задач математики, смежных областей знаний, практики.

Уметь решать дробно-рациональные уравнения, решать уравнения графическим способом, решать текстовые задачи с помощью дробно-рациональных уравнений.

4. Неравенства (19ч)

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Применение свойств неравенств к оценке значения выражения. Линейное неравенство с одной переменной. Система линейных неравенств с одной переменной.

Цель – выработать умения решать линейные неравенства с одной переменной и их системы.

Знать определение числового неравенства с одной переменной, что называется решением неравенства с одной переменной, что значит решить неравенство, свойства числовых неравенств, понимать формулировку задачи «решить неравенство».

Уметь записывать и читать числовые промежутки, изображать их на числовой прямой, решать линейные неравенства с одной переменной, решать системы неравенств с одной переменной.

Уметь применять свойства неравенства при решении неравенств и их систем.

5. Степень с целым показателем (8 ч)

Степень с целым показателем и её свойства. Стандартный вид числа. Запись приближенных значений. Действия над приближенными значениями.

Цель – сформировать умение выполнять действия над степенями с целыми показателями, ввести понятие стандартного вида числа.

Знать определение степени с целым и целым отрицательным показателем; свойства степени с целым показателями.

Уметь выполнять действия со степенями с натуральным и целым показателями; записывать числа в стандартном виде, записывать приближенные значения чисел, выполнять

действия над приближенными значениями.

6. Элементы статистики и теории вероятностей (4 ч)

Сбор и группировка статистических данных. Наглядное представление статистической информации

7. Повторение. Решение задач  (9 ч)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 8 класса). 

Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Цели

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

ОБЯЗАТЕЛЬНЫЙ МИНИМУМ СОДЕРЖАНИЯ ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ

ГЕОМЕТРИЯ

Начальные понятия и теоремы геометрии

Геометрические фигуры и тела. Равенство в геометрии.

серединного перпендикуляра к отрезку. Перпендикуляр и наклонная к прямой.

Многоугольники.

Окружность и круг.

Треугольник. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.

Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Признаки равенства прямоугольных треугольников. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0° до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Теорема косинусов и теорема синусов; примеры их применения для вычисления элементов треугольника.

Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан. Окружность Эйлера.

Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция.

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.

Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Измерение геометрических величин.

Величина угла. Градусная мера угла, соответствие между величиной угла и длиной дуги окружности.

Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры.

Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы).

Построения с помощью циркуля и линейки

Основные задачи на построение: деление отрезка пополам, построение треугольника по трем сторонам, построение перпендикуляра к прямой, построение биссектрисы, деление отрезка на n равных частей.

ОСНОВНОЕ СОДЕРЖАНИЕ
Геометрия 8 класс
(68 ч.)

Треугольник. Прямоугольные, остроугольные, и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.

Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Признаки равенства прямоугольных треугольников.

Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан. Окружность Эйлера.

Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция.

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.

Окружность, вписанная в треугольник, и окружность, описанная около треугольника.

Измерение геометрических величин. Длина отрезка. Длина ломаной, периметр многоугольника.

Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры.

Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы).

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения математики ученик должен

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Геометрия

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;
  • распознавать геометрические фигуры, различать их взаимное расположение;
  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
  • находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;
  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
  • Уметь выполнять задачи из разделов курса VII класса: признаки равенства треугольников; соотношения между сторонами и углами треугольника; признаки и свойства параллельных

§1. МНОГОУГОЛЬНИКИ.

Многоугольник. Выпуклый многоугольник, п.39, 40.Четырехугольник, п.41.

Уметь объяснить, какая фигура называется многоугольником, назвать его элементы; Знать, что такое периметр многоугольника, какой многоугольник называется выпуклым;

Уметь вывести формулу суммы углов выпуклого многоугольника и решать задачи типа 364 – 370.

Уметь находить углы многоугольников, их периметры. прямых. Знать понятия: теорема, свойство, признак.

§2. ПАРАЛЛЕЛОГРАММ И ТРАПЕЦИЯ.

Параллелограмм, п.42. Свойства и признаки параллелограмма, п.43. Решение задач на свойства и признаки параллелограмма.  Трапеция, п.44. Задачи на построение циркулем и линейкой.

Знать определения параллелограмма и трапеции, виды трапеций, формулировки свойств и признаков параллелограмма и равнобедренной трапеции,

Уметь  доказывать и применять свойства при решении задач типа 372 – 377, 379 – 383, 39О. Уметь выполнять деление отрезка на n равных частей с помощью циркуля и линейки; используя свойства параллелограмма и равнобедренной трапеции

 Уметь выполнять задачи на построение четырехугольников.

§3. ПРЯМОУГОЛЬНИК. РОМБ. КВАДРАТ.

Прямоугольник, п.45. Ромб и квадрат, п.46. Осевая и центральная симметрии, 47.

Знать определения частных видов параллелограмма: прямоугольника, ромба и квадрата, формулировки их свойств и признаков.

Уметь доказывать изученные теоремы и применять их при решении задач типа 401 – 415.

Знать определения симметричных точек и фигур относительно прямой и точки.

Уметь строить симметричные точки и распознавать фигуры, обладающие осевой симметрией и центральной симметрией.

§1. ПЛОЩАДЬ МНОГОУГОЛЬНИКА.

Понятие площади многоугольника. Площадь квадрата, п.48, 49. Площадь прямоугольника, п.50

Знать основные свойства площадей и формулу для вычисления площади прямоугольника.

Уметь вывести формулу для вычисления площади прямоугольника и использовать ее при решении задач типа 447 – 454, 457

§2. ПЛОЩАДИ ПАРАЛЛЕЛОГРАММА, ТРЕУГОЛЬНИКА И ТРАПЕЦИИ.

Площадь параллелограмма, п.51. Площадь треугольника, п.52. Площадь трапеции, п.53.

Знать формулы для вычисления площадей параллелограмма, треугольника и трапеции;

Уметь их доказывать

Знать теорему об отношении площадей треугольников, имеющих по равному углу,

 Уметь применять все изученные формулы при решении задач типа 459 – 464, 468 – 472, 474.

Уметь применять все изученные формулы при решении задач, в устной форме доказывать теоремы и излагать необходимый теоретический материал.

§3. ТЕОРЕМА ПИФАГОРА.

Теорема Пифагора, п.54. Теорема, обратная теореме Пифагора, п.55.

Знать теорему Пифагора и обратную ей теорему, область применения, пифагоровы тройки. Уметь доказывать теоремы и применять их при решении задач типа 483 – 499 (находить неизвестную величину в прямоугольном треугольнике).

Уметь применять теоремы при решении задач типа 483 – 499 (находить неизвестную величину в прямоугольном треугольнике).

Уметь применять все изученные формулы и теоремы при решении задач; в устной форме доказывать теоремы и излагать необходимый теоретический материал.

§1. ОПРЕДЕЛЕНИЕ ПОДОБНЫХ ТРЕУГОЛЬНИКОВ.

Пропорциональные отрезки. Определение подобных треугольников, п.56, 57. Отношение площадей подобных треугольников, п.58.

Знать определения пропорциональных отрезков и подобных треугольников, теорему об отношении подобных треугольников и свойство биссектрисы треугольника (задача 535).

Уметь определять подобные треугольники, находить неизвестные величины из пропорциональных отношений, применять теорию при решении задач типа 535 – 538, 541.

§2. ПРИЗНАКИ ПОДОБИЯ ТРЕУГОЛЬНИКОВ.

Первый признак подобия треугольников, п.59. Второй и третий признаки подобия треугольников, п.60, 61.

Знать первый признак подобия; Уметь его доказывать и применять при решении задач.

Знать признаки подобия треугольников, определение пропорциональных отрезков.

Уметь доказывать признаки подобия и применять их при р/з550 – 555, 559 – 562.

§3. ПРИМЕНЕНИЕ ПОДОБИЯ К ДОКАЗАТЕЛЬСТВУ ТЕОРЕМ И РЕШЕНИЮ ЗАДАЧ.

Средняя линия треугольника, п.62. Пропорциональные отрезки в прямоугольном треугольнике, п.63. Практические приложения подобия треугольников. О подобии произвольных фигур, п.64, 65.

Знать теоремы о средней линии треугольника, точке пересечения медиан треугольника и пропорциональных отрезках в прямоугольном треугольнике.

Уметь доказывать эти теоремы и применять при решении задач типа 567, 568, 570, 572 – 577, а также уметь с помощью циркуля и линейки делить отрезок в данном отношении и решать задачи на построение типа 586 – 590.

§4. СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА.

Синус, косинус и тангенс острого угла прямоугольного треугольника, п.66. Значения синуса, косинуса и тангенса для углов 30°, 45° и 60°, п.67.

Знать определения синуса, косинуса и тангенса острого угла прямоугольного треугольника, значения синуса, косинуса и тангенса для углов 30°, 45° и 60°, метрические соотношения.

Уметь доказывать основное тригонометрическое тождество, решать задачи типа 591 – 602.

§1. КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ.

Взаимное расположение прямой и окружности, п.68. Касательная к окружности, п.69.

Знать возможные случаи взаимного расположения прямой и окружности, определение касательной, свойство и признак касательной.

Уметь их доказывать и применять при решении задач типа 631, 633 – 636, 638 – 643, 648, выполнять задачи на построение окружностей и касательных, определять отрезки хорд окружностей.

§2. ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ.

Градусная мера дуги окружности, п.70. Теорема о вписанном угле, п.71.

Знать, какой угол называется центральным и какой - вписанным, как определяется градусная мера дуги окружности, теорему о вписанном угле, следствия из нее и теорему о произведении отрезков пересекающихся хорд.

Уметь доказывать эти теоремы и применять при решении задач типа 651 – 657, 659, 666 – 669.

§3. ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА.

Свойства биссектрисы угла и серединного перпендикуляра к отрезку, п.72. Теорема о пересечении высот треугольника, п.73.

Знать теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия, а также теорему о пересечении высот треугольника.

 Уметь доказывать эти теоремы и применять их при решении задач типа 674 – 679, 682 – 686. Уметь выполнять построение замечательных точек треугольника.

§4. ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТИ.

Вписанная окружность, п.74. Описанная окружность, п.75.

Знать, какая окружность называется вписанной в многоугольник, и какая описанной около многоугольника, теоремы об окружности, вписанной в треугольник, и об окружности, описанной около треугольника, свойства вписанного и описанного четырехугольников.

Уметь доказывать эти теоремы и применять при решении задач типа 689 – 696, 701 – 711. 

Знать утверждения задач 724, 729 и уметь их применять при решении задач типа 698 – 700, 708.

Литература:

  1. Алгебра, учебник для 8 класса общеобразовательных учреждений / А.Г. Мордкович
  2. Алгебра, задачник для 8 класса общеобразовательных учреждений / А.Г. Мордкович
  3. Геометрия, 7 – 9. Учебник для общеобразовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.: Просвещение, 2005.
  4. Алгебра  7 – 9. Методическое пособие для учителя. / Мордкович А.Г.
  5. Изучение геометрии в 7 – 9 классах. Методические рекомендации к учебнику. Книга для учителя / Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков: Просвещение, 2004.
  6. Алгебра, 8 класс. Контрольные работы для учащихся общеобразовательных учреждений / Л.А. Александрова: Мнемозина, 2009.
  7. Алгебра, 8 класс. Самостоятельные работы для учащихся общеобразовательных учреждений / Л.А. Александрова: Мнемозина, 2009.
  8. Разноуровненвые дидактические материалы по алгебре. 8 класс / М.Б. Миндюк, Н.Г. Миндюк: Издательский Дом «Генжер», 1996.
  9. Дидактические материалы по геометрии для 8 класса / Б.Г. Зив, В.М. Мейлер: Просвещение, 2004.
  10. Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса / А.П. Ершова, В.В. Голобородько, А.С. Ершов: Илекса, 2004.
  11. Задачи и упражнения на готовых чертежах. 7 – 9 классы. Геометрия / Е.М. Рабинович: Илекса, 2001.